VC Dimension

Kontonis Vasilis

27 April, 2017

Corelab, NTUA

1. The VC-Dimension

The VC-Dimension

Theorem

Let $\mathfrak{H} = \{\mathbb{1}_{[x < a]} : a \in \mathbb{R}\}$. Then \mathfrak{H} is PAC learnable, using the ERM rule, with sample complexity $m_{\mathfrak{H}}(\varepsilon, \delta) \leq \lceil \log(2/\delta)/\varepsilon \rceil$.

Proof.

- Let $h^*(x) = \mathbb{1}_{[x < a^= *]}$, with $L_D(h^*) = 0$.
- Let $a_0 < a^* < a_1$:

$$D_x(\{x \in (a_0, a^*)\}) = D_x(\{x \in a^*, a_1)\}) = \epsilon$$

- Given training data S, let $b_0 = \max\{x : (x, 1) \in S\}, b_1 = \min\{x : (x, 0) \in S\}.$
- Let $b_S \in (b_0, b_1)$ be an ERM hypothesis.
- $b_0 \geqslant a_0, \ b_1 \leqslant a_1 \implies L_D(h_S) \leqslant \varepsilon$. Therefore,

 $D^{m}(L_{D}(h_{S}) > \epsilon) \leqslant D^{m}(b_{0} < a_{0} \lor b_{1} > a_{1})$

• $D^m(b_0 < a_0) \leqslant e^{-\epsilon m}$, $D^m(b_1 > a_1) \leqslant e^{-\epsilon m}$.

Definition (Restriction of H to C) Let \mathcal{H} be a class of functions from \mathcal{X} to $\{0, 1\}$ and let $C = \{c_1, \ldots, c_m\} \subset \mathcal{X}$. The restriction of \mathcal{H} to C is the set of functions from C to $\{0, 1\}$ that can be derived from \mathcal{H} . That is,

$$\mathcal{H}_{\mathcal{C}} = \{(h(c_1), \ldots, h(c_m)) : h \in \mathcal{H}\},\$$

where we represent each function from C to $\{0,1\}$ as a vector in $\{0,1\}^{|C|}$.

Definition (Shattering) A hypothesis class \mathcal{H} shatters a finite set $C \subset \mathcal{X}$ if the restriction of \mathcal{H} to C is the set of all functions from C to $\{0, 1\}$. That is, $|\mathcal{H}_C| = 2^{|C|}$.

Threshold Functions

Let \mathcal{H} be the threshold functions over \mathbb{R} . $C = \{c_1\}$ is shattered by \mathcal{H} . A set $C = \{c_1, c_2\}, c_1 \leq c_2$ is no shattered by \mathcal{H} . Consider the labeling (0, 1).

Definition (VC-Dimension)

The VC-dimension of a hypothesis class \mathcal{H} , is the maximal size of a set $\mathcal{C} \subset \mathcal{X}$ that can be shattered by \mathcal{H} . If \mathcal{H} can shatter sets of arbitrarily large size, then $\mathcal{H} = \infty$.

Let *m* be a training set size. If there exists a set $C \subset \mathfrak{X}$ s.t. |C| = 2mand $|\mathcal{H}_C| = 2^{2m}$, that is *C* is shattered by \mathcal{H} , then we cannot learn \mathcal{H} with *m* samples.

Theorem

Let ${\mathcal H}$ be a class of infinite VC-dimension. Then, ${\mathcal H}$ is not PAC learnable.

Proof.

For any training set of *m* samples there exists a training set of 2m samples shattered by $\mathcal{H} \to No$ Free Lunch.

Examples

- Threshold Functions on \mathbb{R} : 1.
- Intervals on \mathbb{R} : 2.
- Axis Aligned Rectangles on \mathbb{R}^2 : 4.
- Hyperplanes in \mathbb{R}^d : d+1.
- Convex *d*-gons on \mathbb{R}^2 : 2d + 1.
- Convex polygons on \mathbb{R}^2 : ∞ .
- $\{\sin(\theta x) : \theta \in \mathbb{R}\}$ on \mathbb{R} : ∞ .

Growth Function

Definition (Growth Function)

Let \mathcal{H} be a hypothesis class. Then the growth function of \mathcal{H} , denoted $\tau_{\mathcal{H}}(m) : \mathbb{N} \to \mathbb{N}$, is defined as

$$\tau_{\mathcal{H}}(m) = \max_{C \subset \mathcal{X}: |C|=m} |\mathcal{H}_C|.$$

Intervals

Let ${\mathcal H}$ be the class of intervals on ${\mathbb R},$ then

$$egin{aligned} m{ au}_{\mathcal{H}}(1) &= 2 \ m{ au}_{\mathcal{H}}(2) &= 4 \ m{ au}_{\mathcal{H}}(3) &= 7 \ m{ au}_{\mathcal{H}}(4) &= 11 \end{aligned}$$

In general $au_{\mathcal{H}}(n) = (n+1)n/2 + 1 = O(n^2)$

Lemma (Sauer's Lemma)

Let \mathcal{H} be a hypothesis class with $\operatorname{VCdim}(\mathcal{H}) \leq d < \infty$. Then, for all m, $\tau_{\mathcal{H}}(m) \leq \sum_{i=0}^{d} {m \choose i}$. In particular, if m > d + 1 then $\tau_{\mathcal{H}}(m) \leq (em/d)^{d}$.

Theorem (Generalized UC)

Let \mathcal{H} be a class and let $\tau_{\mathcal{H}}$ be its growth function. Then, for every D and ever $\delta \in (0,1)$, with probability of at least $1-\delta$ over the choice of $S \sim D^m$ we have

$$|L_D(h) - L_S(h)| \leq \frac{4 + \sqrt{\log(\tau_{\mathcal{H}}(2m))}}{\delta\sqrt{2m}}$$

Theorem

Let \mathcal{H} be a hypothesis class of functions from a domain \mathfrak{X} to $\{0, 1\}$ and let the loss function be the 0-1 loss. Then, the following are equivalent:

- 1. $\mathcal H$ has the UC property.
- 2. Any ERM rule is a successful agnostic PAC learner for $\ensuremath{\mathbb{H}}.$
- 3. \mathcal{H} is agnostic PAC learnable.
- 4. \mathcal{H} is PAC learnable.
- 5. Any ERM rule is a successful PAC learner for \mathcal{H} .
- 6. \mathcal{H} has a finite VC-dimension.

Let \mathcal{H} be a hypothesis class of functions from a domain \mathfrak{X} to $\{0, 1\}$ and let the loss function be the 0-1 loss. Assume that $\operatorname{VCdim}(\mathcal{H}) = d < \infty$. Then, there are absolute constants C_1, C_2 such that:

1. $\ensuremath{\mathcal{H}}$ has the UC property/is APAC learnable with sample complexity:

$$C_1 \frac{d + \log(1/\delta)}{\epsilon^2} \leqslant m_{\mathcal{H}}^{UC} \leqslant C_2 \frac{d + \log(1/\delta)}{\epsilon^2}$$

2. $\mathcal H$ is PAC learnable with sample complexity:

$$C_1 rac{d + \log(1/\delta)}{\epsilon} \leqslant m_{\mathcal{H}} \leqslant C_2 rac{d + \log(1/\delta)}{\epsilon}$$

Constraint Sampling

Let $\ensuremath{\mathbb{X}}$ be a feasible set of linear constraints

 $\gamma_z^T + k_z \ge 0, z \in \mathbb{Z}$

where $K\ell^*|\mathcal{Z}|$.

Claim

The feasible region specified by all constraints can be closely approximated by a sampled subset.

Let ψ be a probability measure over $\mathfrak{Z}.$ Given $\varepsilon\in(0,1)$ we want a $\mathcal{W}\subseteq\mathfrak{Z}$ such that

$$\sup_{\{r : \gamma_z^T r + k_z \ge 0, z \in \mathcal{W}\}} \psi(\{y : \gamma_y^T r + k_y < 0\}) \leqslant \epsilon$$
$$VCdim(\{\{(\gamma, k) : \gamma^T r + k \ge 0\} : r \in \mathbb{R}^K\}) = k$$

Constraint Sampling

Worst Case Constraint Set:

Questions?

References i

M. J. Kearns and U. Vazirani. An Introduction to Computational Learning Theory. The MIT Press, Cambridge, Mass, Aug. 1994.

- M. Mohri, A. Rostamizadeh, and A. Talwalkar.
 Foundations of Machine Learning.
 The MIT Press, Cambridge, MA, Aug. 2012.
- S. Shalev-Shwartz and S. Ben-David.
 Understanding Machine Learning: From Theory to Algorithms.

Cambridge University Press, New York, NY, USA, 1 edition edition, May 2014.