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Learnable Infinite-Size Classes

Theorem
Let H = {1[x<a] : a ∈ R}. Then H is PAC learnable, using the ERM rule,

with sample complexity mH(ε, δ) 6 dlog(2/δ)/εe.

Proof.

• Let h∗(x) = 1[x<a=∗], with LD(h
∗) = 0.

• Let a0 < a∗ < a1 :

Dx({x ∈ (a0, a
∗)}) = Dx({x ∈ a∗, a1)}) = ε

• Given training data S , let

b0 = max{x : (x , 1) ∈ S}, b1 = min{x : (x , 0) ∈ S}.

• Let bS ∈ (b0, b1) be an ERM hypothesis.

• b0 > a0, b1 6 a1 =⇒ LD(hS) 6 ε. Therefore,

Dm (LD(hS) > ε) 6 Dm (b0 < a0 ∨ b1 > a1)

• Dm(b0 < a0) 6 e−εm, Dm(b1 > a1) 6 e−εm.
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Shattering

Definition (Restriction of H to C)
Let H be a class of functions from X to {0, 1} and let

C = {c1, . . . , cm} ⊂ X. The restriction of H to C is the set of functions

from C to {0, 1} that can be derived from H. That is,

HC = {(h(c1), . . . , h(cm)) : h ∈ H},

where we represent each function from C to {0, 1} as a vector in {0, 1}|C |.

Definition (Shattering)
A hypothesis class H shatters a finite set C ⊂ X if the restriction of H to

C is the set of all functions from C to {0, 1}. That is, |HC | = 2|C |.
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VC Dimension

Threshold Functions
Let H be the threshold functions over R. C = {c1} is shattered by H. A

set C = {c1, c2}, c1 6 c2 is no shattered by H. Consider the labeling

(0, 1).

Definition (VC-Dimension)
The VC-dimension of a hypothesis class H, is the maximal size of a set

C ⊂ X that can be shattered by H. If H can shatter sets of arbitrarily

large size, then H = ∞.
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NFL Revisited

Let m be a training set size. If there exists a set C ⊂ X s.t. |C | = 2m

and |HC | = 22m ,that is C is shattered by H, then we cannot learn H

with m samples.

Theorem
Let H be a class of infinite VC-dimension. Then, H is not PAC learnable.

Proof.
For any training set of m samples there exists a training set of 2m

samples shattered by H→ No Free Lunch.
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Examples

• Threshold Functions on R: 1.

• Intervals on R : 2.

• Axis Aligned Rectangles on R2 : 4.

• Hyperplanes in Rd : d + 1.

• Convex d-gons on R2 : 2d + 1.

• Convex polygons on R2 : ∞.

• {sin(θx) : θ ∈ R} on R : ∞.
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Growth Function

Definition (Growth Function)
Let H be a hypothesis class. Then the growth function of H, denoted

τH(m) : N→ N, is defined as

τH(m) = max
C⊂X:|C |=m

|HC |.

Intervals
Let H be the class of intervals on R, then

τH(1) = 2

τH(2) = 4

τH(3) = 7

τH(4) = 11

In general τH(n) = (n + 1)n/2 + 1 = O(n2)
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Sauer’s Lemma and UC

Lemma (Sauer’s Lemma)
Let H be a hypothesis class with VCdim(H) 6 d <∞. Then, for all m,

τH(m) 6
∑d

i=0

(
m
i

)
. In particular, if m > d + 1 then τH(m) 6 (em/d)d .

Theorem (Generalized UC)
Let H be a class and let τH be its growth function. Then, for every D

and ever δ ∈ (0, 1), with probability of at least 1 − δ over the choice of

S ∼ Dm we have

|LD(h) − LS(h)| 6
4 +

√
log(τH(2m))

δ
√

2m

8



The Fundamental Theorem of Statistical Learning

Theorem
Let H be a hypothesis class of functions from a domain X to {0, 1} and let

the loss function be the 0 − 1 loss. Then, the following are equivalent:

1. H has the UC property.

2. Any ERM rule is a successful agnostic PAC learner for H.

3. H is agnostic PAC learnable.

4. H is PAC learnable.

5. Any ERM rule is a successful PAC learner for H.

6. H has a finite VC-dimension.
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Quantitative Version

Let H be a hypothesis class of functions from a domain X to {0, 1} and let

the loss function be the 0 − 1 loss. Assume that VCdim(H) = d <∞.

Then, there are absolute constants C1,C2 such that:

1. H has the UC property/is APAC learnable with sample complexity:

C1
d + log(1/δ)

ε2
6 mUC

H 6 C2
d + log(1/δ)

ε2

2. H is PAC learnable with sample complexity:

C1
d + log(1/δ)

ε
6 mH 6 C2

d + log(1/δ)

ε
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Constraint Sampling

Let Z be a feasible set of linear constraints

γTz + kz > 0, z ∈ Z

where K `∗|Z|.

Claim
The feasible region specified by all constraints can be closely

approximated by a sampled subset.

Let ψ be a probability measure over Z. Given ε ∈ (0, 1) we want a

W ⊆ Z such that

sup
{r : γT

z r+kz>0,z∈W}

ψ({y : γTy r + ky < 0}) 6 ε

VCdim({{(γ, k) : γT r + k > 0} : r ∈ RK }) = K
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Constraint Sampling

Worst Case Constraint Set:
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Questions?
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