VC Dimension

Kontonis Vasilis

27 April, 2017

Corelab, NTUA



1. The VC-Dimension



The VC-Dimension



Learnable Infinite-Size Classes

Theorem
Let H ={1., :a € R}. Then H is PAC learnable, using the ERM rule,

with sample complexity mq¢(e, ) < [log(2/0)/€].
Proof.
o Let h*(x) = Loy, with Lp(h*) = 0.
e letag<a* < ay:
Di({x € (a0,3")}) = Dx({x € a*,a1)}) = €

e Given training data S, let

by = max{x: (x,1) € S}, by = min{x : (x,0) € S}.
Let bs € (bg, b1) be an ERM hypothesis.

by > ag, by < a1 = Lp(hs) < €. Therefore,

D™ (LD(hs) > 6) <D™ (bo <a Vb > 31)

Dm(bo < 80) < e &M, Dm(bl > 31) Le em,



Definition (Restriction of H to C)
Let H be a class of functions from X to {0,1} and let

C ={c1y...,cm} C X. The restriction of H to C is the set of functions
from C to {0, 1} that can be derived from H. That is,

He ={(h(ar),...,h(cm)) = he X}

where we represent each function from C to {0,1} as a vector in {0, 1}/¢!.

Definition (Shattering)
A hypothesis class H shatters a finite set C C X if the restriction of H to

C is the set of all functions from C to {0,1}. That is, |Hc| = 2/€/.



Threshold Functions
Let H be the threshold functions over R. C ={c;} is shattered by H. A

set C ={c1, &}, c1 < ¢ is no shattered by . Consider the labeling
(0,1).

Definition (VC-Dimension)

The VC-dimension of a hypothesis class H, is the maximal size of a set
C C X that can be shattered by H. If H can shatter sets of arbitrarily
large size, then H = oo.



NFL Revisited

Let m be a training set size. If there exists a set C C X s.t. |C| =2m
and |H¢| = 2?7 that is C is shattered by J(, then we cannot learn I
with m samples.

Theorem
Let H be a class of infinite VVC-dimension. Then, H is not PAC learnable.

Proof.
For any training set of m samples there exists a training set of 2m

samples shattered by H{ — No Free Lunch. [



ETNIES

Threshold Functions on R: 1.
Intervals on R : 2.

Axis Aligned Rectangles on R? : 4.
Hyperplanes in RY : d 4 1.
Convex d-gons on R? : 2d + 1.
Convex polygons on R? : oo.
{sin(0x):0 € R} onR: oo.




Growth Function

Definition (Growth Functio?
Let H{ be a hypothesis class. Then the growth function of 3, denoted

Tyc(m) :N —= N, is defined as

T = Hel.
3c(m) chp:%:ml cl

Intervals
Let H be the class of intervals on R, then

Tyc(1) =2
Toc(2) =4
Tyc(3) =7
Toc(4) = 11

In general Tgc(n) = (n+1)n/2+1 = 0(n?)



Sauer’s Lemma and UC

Lemma (Sauer’s Lemma)
Let H be a hypothesis class with VCdim(H) < d < oo. Then, for all m,

Toe(m) < Y90, (). In particular, if m > d + 1 then Tqc(m) < (em/d).

Theorem (Generalized UC)

Let H be a class and let Tq¢ be its growth function. Then, for every D
and ever & € (0,1), with probability of at least 1 — & over the choice of
S~ D™ we have

4+ /log(Tyc(2m))
ILp(h) — Ls(h)| < Wors




The Fundamental Theorem of Statistical Learning

Theorem
Let H be a hypothesis class of functions from a domain X to {0, 1} and let

the loss function be the 0 — 1 loss. Then, the following are equivalent:
1. 3 has the UC property.
2. Any ERM rule is a successful agnostic PAC learner for H.
3. H is agnostic PAC learnable.
4. H is PAC learnable.
5. Any ERM rule is a successful PAC learner for J{.
6. H has a finite VC-dimension.



Quantitative Version

Let H be a hypothesis class of functions from a domain X to {0, 1} and let
the loss function be the 0 — 1 loss. Assume that VCdim(H) = d < oco.
Then, there are absolute constants Ci, G, such that:

1. H has the UC property/is APAC learnable with sample complexity:

C1d+|(;g2(1/6) < mYC < C2d+lo€g2(1/5)

2. H is PAC learnable with sample complexity:

log(1 log(1
C1d+ oeg( /8) <m \C2d+ oeg( /8)

10



Constraint Sampling

Let Z be a feasible set of linear constraints

Yl +k, >0,z€2
where K{*|Z].

Claim
The feasible region specified by all constraints can be closely

approximated by a sampled subset.

Let 1\ be a probability measure over Z. Given € € (0,1) we want a
W C Z such that

sup Y({y:y)r+k <0)<e
{r:vIr+tk,>0,ze W}

VCAim({(y, k) : vy r+k >0} : reRK) =K
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Constraint Sampling

Worst Case Constraint Set:
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Questions?
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